FLUID POWER FORMULAS

BASIC FORMULAS		
FORMULA FOR:	WORD FORMULA	LETTER FORMULA
Fluid pressure In Pounds/Square Inch	PRESSURE = FORCE (pounds) UNIT AREA (suare inches)	$P = \frac{F}{A}$ or psi = $\frac{F}{A}$
Fluid flow rate In Gallons/Minute	FLOW RATE = \frac{VOLUME (gallons)}{UNIT TIME (Minutes)}	$Q = \frac{v}{T}$
Fluid power In Horsepower	$HORSEPOWER = \frac{Pressure (PSI)x Flow (GPM)}{1714}$	$HP = \frac{PQ}{1714}$

FLUID FORMULAS		
FORMULA FOR:	WORD FORMULA	LETTER FORMULA
Velocity through piping In feet/ sec. velocity	VELOCITY = \frac{.3208 \text{ x flow rate though I.D (GPM)}}{Internal area (Square inches)}	$v = \frac{.3208Q}{A}$
Compressibility of oil In additional required oil to reach pressure	ADDITIONAL VOLUME = Pressure x Vol.of oil under pessure Internal area (Square inches250,000 (Approx.)	$VA = \frac{PV*}{250,000}$ * Approx. $\frac{1}{2}$ % per 1000 psi
Compressibility of a fluid	COMPRESSIBILITY = Bulk modulus of the fluid	$C(B) = \frac{1}{BM}$
Specific gravity of a fluid	SPECIFIC GRAVITY = $\frac{Weight of one \ cubic \ foot \ of \ fluid}{Weight \ of \ one \ cubic \ foot \ of \ water}$	$SG = \frac{W}{62.4283}$
Valve (CV) flow factor	VALVE FACTOR (CV) = $\frac{Flow\ rate\ (GMP)\ x\ \sqrt{Specific\ gravity}}{Pressure\ drop\ (psi)}$	$CV = \frac{Q\sqrt{SG}}{\Delta P}$
Viscosity in centistokes	For viscosities of 32 to 100 Saybolt Uni. Seconds: CENTISTOKES = .2253 x SUS $\frac{194.4}{SUS}$	$CS = .2253 \text{ SUS} - \frac{194.4}{SUS}$
Viscosity in centistokes	For viscosities of 100 to 240 Saybolt Uni. Seconds: CENTISTOKES = .2193 x SUS $\frac{134.6}{SUS}$	$CS = .2193 \text{ SUS} - \frac{134.6}{SUS}$
Viscosity in centistokes	For viscosities greater than 240 Saybolt Uni. Seconds: $CENTISTOKES = \frac{SUS}{4.635}$	$CS = \frac{SUS}{4.635}$

PUMP FORMULAS		
FORMULA FOR:	WORD FORMULA	LETTER FORMULA
PUMP OUTLET FLOW In gallons/minute	$FLOW = \frac{RPM \ X \ PUMP \ DISPLACEMENT \ (Cu.In \ Rev.)}{231}$	$Q = \frac{nd}{231}$
Pump input power In horsepower requires	HORSEPOWER INPUT = $\frac{Flow \ rate \ output \ (GPM)x \ Pressure \ (psi)}{1714 \ x \ efficiency \ (Overall)}$	$HP_{IN} = \frac{QP}{1714 Eff}$ or $\frac{GPM x psi}{1714 Eff}$
Pump efficiency Overall in percent	OVERALL EFFICIENCY = Outpower Horsepower x 100 OVERALL EFFICIENCY = Volumetric Eff. x Mechanical Eff.	$Eff_{ov} = \frac{_{HP_{out}}}{_{HP_{in}}} \times 100$ $Eff_{ov} = Eff_{vol} \times Eff_{mech}$
Pump efficiency Overall in percent	VOLUMETRIC EFFICIENCY = $\frac{Actual\ flow\ rate\ output\ (GPM)}{Theoretical\ flow\ rate\ output\ (GPM)} \times 100$	$Eff_{vol} = \frac{O_{Act}}{O_{Theo.}} \times 100$
Pump efficiency Mechanical in percent	$MECHANICAL EFFICIENCY = \frac{Theoretical torque to drive}{Actual torque to drive} \times 100$	$Eff_{mec} = \frac{T_{Theo}}{T_{Act}} \times 100$
Pump life B ₁₀ Bearing life	B_{10} HOURS OF BEARING LIFE = Rated life hrs. x $\frac{Rated\ speed\ (RPM)}{New\ speed\ (RPM)}$ x $\left(\frac{rated\ pressure\ (psi)}{new\ pressure\ (psi)}\right)^3$	B_{10} = Rated hrs. $\times \frac{RPM_R}{RPM_N} - \left(\frac{PR}{PR}\right)^3$

FLUID POWER FORMULAS

ACTUATOR FORMULAS		
FORMULA FOR:	WORD FORMULA	LETTER FORMULA
Cylinder area In square inches	AREA = ∏ x Radius ² (Inches)	$A = \pi r^2$
	$AREA = \frac{\prod x Diameter^2 (Inches)}{4}$	$A = \frac{\pi r^2}{4}$ or A = $.785D^2$
Cylinder force In pounds, push or pull	FORCE = Pressure (psi) x Net area (square inches)	F = psi x A or F = PA
Cylinder velocity or speed In feet/second	$VELOCITY = \frac{231 x Flow rate (GPM)}{12 x 60 x net area (square inches)}$	$F = \frac{231Q}{720A} \text{ or V} = \frac{.3208Q}{A}$
Cylinder Vol. capacity In gallons of fluid	$VELOCITY = \frac{\prod x Radius^2 \ x \ stroke \ (inches)}{231}$	$V = \frac{\pi r^2 l}{231}$
	$NET AREA = \frac{Net \ area \ (square \ inches) \ x \ stroke \ (inches)}{231}$	$V = \frac{Al}{231}$ I = length of stroke
Cylinder flow rate In gallons per min.	FLOW RATE = $\frac{12 \times 60 \times velocity (Feet/sec) \times Net \ area \ (sq.inches)}{231}$	$Q = \frac{720vA}{231}$ or Q = 3.117vA
	TORQUE = $\frac{Pressure (psi)x F.M Displacement (Cu.In/Rev.)}{2 \prod}$	$T = \frac{psid}{2\Pi} \text{ or } T = \frac{pd}{2\Pi}$
Fluid motor torque In inch pounds	Horsepower x 63025 RPM	$T = \frac{63025HP}{n}$
	Flow rate (GPM)X pressure (psi) x 36.77 RPM	$T = \frac{36.77QP}{n} \text{ or } T = \frac{36.77Qpsi}{n}$
Fluid motor torque/100 psi In inch pounds	TORQUE/ 100 psi = $\frac{F.M \ Displacement \ (Cu.In/Rev.)}{.0628}$	$T_{100psi} = \frac{d}{.0628}$
Fluid motor speed In revolutions/min	$SPEED = \frac{231 X flow rate (GPM)}{F.M Displacement (Cu.In/Rev.)}$	$n = \frac{231Q}{d}$
Fluid motor power In horsepower output	Horsepower = $\frac{Torque\ output\ (Inch\ pounds)x\ RPM}{63025}$	$HP = \frac{Tn}{63025}$

THERMAL FORMULAS			
FORMULA FOR:	WORD FORMULA	LETTER FORMULA	
Reservoir cooling capacity Based on adequate air circulation	HEAT (BTU/HR) = 2 x temp. diff btwn reservoir walls and air (°F) x area of reservoir (sq. feet)	BTU/HR = 2.0 x ΔT xA	
Heat in hydraulic oil (approx.) Due to system efficiency (SG= .89.32)	HEAT (BTU/HR) = Flow rate (GPM) x 210 x Temp. difference (°F)	BTU/HR = Q x 210 xΔT	
Heat in fresh water (approx.)	HEAT (BTU/HR) = Flow rate (GPM) x 500 x Temp. difference (°F)	BTU/HR = Q x 500 xΔT	

ACCUMULATOR FORMULAS			
FORMULA FOR:	WORD FORMULA	LETTER FORMULA	
Pressure or Volume With constant "T" temp.	Original pressure x original volume = Final pressure x Final volume	$P_1 V_1 = P_2 V_2$ Isothermic	
Pressure or Temperature With constant "V" volume	Original pressure x Final temperature = Final pressure x Original temperature	P_1 $T_2 = P_2$ T_1 Isochoric	
Pressure or Temperature With constant "P" pressure	Original volume x Final temperature = Final volume x original temperature	V_1 $T_2 = V_2$ V_1 Isobaric	
Pressure or Temperature	Original pressure x original volume = Final pressure x Final volume	$P_1 V_1^n = P_2 V_2^n$	
With temp. change due to heat of compression	$\frac{\textit{Final temp}}{\textit{Orig.temp}} = \left(\frac{\textit{Orig. volume}}{\textit{Final volume}}\right)^{n-1} = \left(\frac{\textit{Final pressure}}{\textit{Orig.volume}}\right)^{n-1/n}$	$\frac{T}{T} = \left(\frac{V_1}{V_2}\right)^{n-1} = \left(\frac{P_1}{P_2}\right)^{n-1/n}$	